在生物信息识别领域,指纹识别可以说是最先进入人们视野、发展得最早最快的技术,然而随着机器学习和更先进的光学元件的出现,人脸识别、虹膜识别等后起之秀冲击了指纹识别的地位。但是,人手携带的生物信息远远不止指纹这么简单。手掌纹、静脉血管结构、皮下软组织等都可以成为人类独一无二的身份证。亚马逊就看中了这一点。在公开的专利申请中,亚马逊称,人手识别是一种“非接触式的生物识别系统,包括一台能够读取用户手掌信息的扫描仪。”被识别者的手掌信息会被分割为更小的照片,并使用神经网络提取特征向量,和该用户以往的记录进行比对,以验证是本人。在实际应用中,消费者可以将信用卡和手部信息绑定,在结账的时候只需要刷一下手就可以完成付款。根据亚马逊专利文件中的图示,用户需要把手在一个类似读卡器的摄像头上晃一下(不需要像读指纹一样把手按在屏幕上)。与此同时,红外线摄像头则会生成两张图片:第一张是第一种波长的偏振光下生成的手掌表面信息,包括手掌内的褶皱和细小的纹路;第二张是第二种波长的偏振光下照到的手掌内部脉络,比如静脉血管。手掌表面信息和底层信息结合在一起加强了系统的安全性,就算有人倒模做出一只一模一样的手来,也没法骗过摄像头。接着,手掌图片会被分割成多个小部分,由多层神经网络处理外部掌纹特征以及内部解剖特征,并和用户预存在系统内的手掌信息进行对比,完成验证。为了使刷手更加快捷,亚马逊还在系统中加入了图像变换模块。图像变换模块可以将输入图像平移、旋转、翘曲、过滤,使图像变得更标准。例如,应用校正变换后,原始图像的像素会从扭曲的原位置映射到标准图像中的不同位置,哪怕刷手时手掌没有伸直,或者没倾斜扭转,也可以准确读取。刷手技术没有停留在理论层面,而是已经被加入了亚马逊无人店全家桶。在专利文件最后,亚马逊也介绍了如何将人手识别纳入 Amazon Go 现有的验证体系,说明了从刷手验明正身、到在无人店内使用各种传感器检测用户购物行为、最终从用户绑定账户中扣款的全过程。而从专利文件上也能看出人手识别和 Amazon Go 的紧密联系。在专利发明人名单上出现了多位 Amazon Go 核心人员的名字,其中 Dilip Kumar 是 Amazon Go 的技术负责人,也是亚马逊实体零售计划的副总裁。有理由相信,这项技术会在亚马逊自家实体店先落地。