怎么来理解伽玛(gamma)分布?

Gamma分布即为多个独立且相同分布(iid)的指数分布变量的和的分布。
(最新修改,希望能够行文布局更有逻辑)

——————泊松过程——————
指数分布泊松分布的关系十分密切,是统计学中应用极大的两种分布。
其中泊松过程是一个显著应用。

泊松过程是一个计数过程,通常用于模拟一个(非连续)事件在连续时间中发生的次数。
{N(t):tgeq 0}为一个泊松过程,则其满足三个性质:
N(0)=0(t=0时什么都没发生)

N(t+s)-N(t)(增量)之间互相独立:
扩展补充:N(t+1)-N(t)N(t)-N(t-1)互相独立,且在计数过程中
Pr(N(t+1)=n_{t+1}|N(t)=n_{t},N(t-1)=n_{t-1},...,N(1)=n_{i})
=Pr(N(t+1)=n_{t+1}|N(t)=n_{t})
这是因为
Pr(N(t+1)=n_{t+1}|N(t)=n_{t},N(t-1)=n_{t-1},...,N(1)=n_{i})
=Pr(N(t+1)=N(t)+n_{t+1}-n_{t}|N(t)=n_{t},N(t-1)=n_{t-1},...,N(1)=n_{i})
=Pr(N(t+1)=n_{t+1}|N(t)=n_{t})

Pr(N(t+s)-N(s)=n)=Pr(N(t)=n)=e^{-lambda t} frac{(lambda t )^{n}}{n!}
N(t) sim Poi(lambda t)
根据增量独立性,易知其成立。

——————泊松→指数——————
假设T_{i}为第i-1次事件与第i次事件的间隔时间。
Pr(T_{1}>t)=Pr(N(t)=0)=e^{-lambda t}
所以T_{1} sim Exp(lambda)

Pr(T_{i}>t|T_{i-1}=s)=Pr(N(t+s)-N(s)=0)=e^{-lambda t}
所以T_{i} sim Exp(lambda)

即泊松过程的事件间隔时间为指数分布。

——————指数→Gamma—————
再令S_{n}=sum_{i=1}^{n}{T_{i}} ,即从头开始到第n次事件的发生的时间,该随机变量分布即为Gamma分布。
S_{n} sim Gamma(n,lambda )
Gamma分布即为多个独立且相同分布(iid)的指数分布变量的和的分布。

——————证明——————
假设X_{1},X_{2},X_{3},...X_{n}sim Exp(lambda )且互相独立

①Moment Generating Function(MGF):
MGF的定义为M_{X}(t)=E[e^{tX} ]=1+tX+frac{t^{2}X^{2}}{2!} +frac{t^{3}X^{3}}{3!}+...frac{t^{n}X^{n}}{n!}+...
E[X^{n}]=M_{X}^{(n)} (0)=frac{d^{n}M_{X}(t)}{dt} |_{t=0}
其性质为M_{X+Y}(t)=M_{X}(t)	imes M_{Y}(t)

下证:
X_{i} sim Exp(lambda)Leftrightarrow M_{X_{i}}(t)=(1-frac{t}{lambda} )^{-1}
S=sum_{i=1}^{n}{X_{i}}
M_{S}(t)=prod_{i=1}^{n} M_{X_{i}}(t)=prod_{i=1}^{n} (1-frac{t}{lambda} )^{-1}=(1-frac{t}{lambda} )^{-n}
为Gamma分布的MGF。
MGF:Moment-generating function

②数学归纳法:
已知Gamma(1,lambda)=Exp(lambda)
所以当n=1时成立。
假设nleq kS_{n}=sum_{i=1}^{n}{X_{i}} sim Gamma(n,lambda )成立
n=k+1时,
S_{k+1}=S_{k}+X_{k+1}
其中S_{k} sim Gamma(k,lambda), X_{k+1} sim Exp(lambda)
Pr(S_{k+1}=x)
=int_{0}^{x} Pr(S_{k}=y)Pr(X_{k+1}=x-y)dy
=int_{0}^{x} frac{lambda^{k}}{Gamma (k)} y^{k-1}e^{-lambda y}	imes lambda e^{-lambda (x-y)}dy
=frac{lambda^{k+1}}{Gamma (k)}e^{-lambda x}int_{0}^{n}  y^{k-1}dy
=frac{lambda^{k+1}}{Gamma (k)}e^{-lambda x} frac{y^{k}}{k}|_{y=0}^{n}
=frac{lambda^{k+1}}{Gamma (k+1)}x^{k}e^{-lambda x}
Gamma(k+1, lambda)的pdf。证毕。

当然,Gamma分布与Beta,Chi-square分布也有着十分紧密的联系,不过在统计学应用中都不如与指数分布的联系来得重要。

作者:T Yuan
链接:https://www.zhihu.com/question/34866983/answer/60541847
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注