隐身衣早已不再是幻想,声光电热各有隐身绝招

本文来自微信公众号:返朴 (ID:fanpu2019),作者:徐磊(香港中文大学物理系教授)

自古以来人类就想象一种隐身的能力,“隐身”至今仍时常出现在文艺作品或者电子游戏中 —— 往往是以魔法或者科幻的形式出现。风靡全球的《哈利・波特》中主人公的那件隐身斗篷就满足了我们对隐身衣的幻想。实际上,这种能让光“穿过”身体的光学隐身衣已经被研发出来。不仅如此,科学家对于物质在不同物理环境下的隐身都进行了广泛而深入的探索,由此构造了不同类型的隐身衣,绝对超出你的想象。

实现隐身一直是人类身自古以来的梦想:从《西游记》中孙大圣的隐身术到《哈利波特》中哈利的隐身斗篷,这一梦想受到全世界人们的广泛关注。隐身在狭义上仅仅指用眼睛看不见,更广义的隐身则不仅仅局限于眼睛,而是泛指使用某一探测手段(如雷达、声呐)无法探测到,就称之为在这种探测手段下隐身。实现隐身在军事上有重要的应用,比如隐身飞机、隐身舰艇等可以悄无声息的接近目标,因此隐身技术成为各国在军事领域的研究焦点。随着科学技术的发展,各类隐身衣在许多不同物理场中成功实现,并且持续成为不同领域的研究热点。隐身衣的原理是什么?都有哪些不同的隐身衣?它们是怎样被实现的?如果有朝一日可以穿上隐身衣,你打算给亲朋好友一个怎样的惊喜(惊吓)呢?假如你对这些问题感兴趣,这篇文章就是为你精心准备的 。

隐身衣的工作原理

欲要实现隐身,让我们先了解一下为什么我们可以看见。一种比较普遍的情况是:物体反射或散射的光线进入我们的眼睛,从而可以看见物体(如下图所示):

初中物理课本(人教版)

知道了这个原理,不禁让人生出一个大胆的想法:如果一件衣服可以把光线完全吸收而不反射或散射任何光线,是不是就可以隐身了呢?众所周知,黑色可以很好地吸收光线,穿一件超级黑色的斗篷覆盖全身(如下图所示),是不是就可以到大街上为所欲为了?事情可远远没有这么简单。

《蝙蝠侠:侠影之谜》剧照

很明显,虽然在上图中蝙蝠侠的黑衣吸收了所有光线,但是跟明亮背景的对比却把蝙蝠侠彻底暴露,所以仅靠吸收光线无法实现隐身。

既然物体对光线的反射、散射、吸收都会暴露它的位置,那怎样才能实现隐身呢?哈利波特的隐身斗篷为我们提供了正确的思路(如下图所示):

《哈利・波特与魔法石》剧照

图中,哈利波特的隐身斗篷实现了既不反射和散射光线,也不吸收光线,而是让光线丝毫不受影响的按原路传播。当哈利周围的光线可以自由通过他的身体不受任何影响时,他的身体就凭空“消失” 了 —— 我们可以清楚看到他身后的背景墙却看不到他的身体。所以,设计隐身斗篷的基本原理是使光线的传播不受物体影响。

原理虽然简单,实现却是难题:因为绝大多数物体都是不透明的,光线无法穿透它们继续传播。怎样让光线不受物体影响呢?目前的基本思路是设计一层特殊结构的材料包裹物体,而这层特殊材料可以让光线绕过物体并沿着原来的传播路径继续传播(如下图所示)。这层特殊结构的材料就是隐身衣。

John Pendry 教授

空间变换:将点变换成一个区域

所以隐身衣的本质就是,制造一个光线会绕过的区域并把物体隐藏其中,从而实现隐身。这种方式已经可以在实验中实现,比如用几个透镜制造出一个光线会完全绕过的区域,当把物体放入这个区域时外界完全无法探测到。怎么样,这个特殊空间可谓躲猫猫神器吧?你是否也想拥有并利用它实施一些大胆的计划呢?

负折射率超构材料 图片来源:维基百科

超构材料通常并不是天然材料,而是通过功能基元的设计和基元的特殊空间排列来构筑的人工材料。它可以展现出许多新奇、超常的物理特性,并广泛利用在光学、力学、声学等多个领域,例如光学负折射率材料、力学负泊松比材料、声学吸声材料等。

左:负折射率超构材料。右:正折射率普通材料  图片来源:Dolling et al., Optics Express, 2006.

(1)电磁波隐身衣

利用超构材料,科学家们在 2006 年首次实现了在微波频率的电磁波隐身衣(见下图)。微波跟可见光一样都是电磁波,只是波长在更长的尺度(毫米到米)。我们常用的微波炉就是利用这一波段的电磁波给食物加热。虽然这个隐身衣在可见光波长下看起来一点也不“隐身”,但是在特定的微波波长下(3.5 厘米)它却是隐身的,并且它内部的物体也被隐藏,无法被这种波长 3.5 厘米的微波探测到。

(a)微波隐身衣的结构设计。(b)隐身衣的数值模拟展示了微波通过隐身衣后继续传播。(c)实验结果与模拟结果吻合。图片来源:D. Schurig, et al., Science, 314, 977 (2006)

继微波隐身衣之后,针对可见光的隐身衣也被科学家开发出来,并且发展出了许多不同类型。一种常见的设计方案是地毯式隐身衣:它能够将物体隐藏在地毯式隐身器件下面,对于旁边的观察者来说,看到的效果就像平整的地面一样,从而使物体隐身。设计原理本质上是通过特殊镜面或隐藏装置把本该照射到物体上的光线反射或折射绕过物体并按原路传播。

图片来源:wikimedia

图片来源:IOA

(2)光学隐身衣

利用这一设计方案,科学家们在 2009 年成功实现了地毯式光学隐身衣(见下图)。当没有隐身衣时物体会把光线向各个方向散射(左下图),而一旦穿上隐身衣光线的传播方向则跟平滑的地板一模一样(中下图):远处的观测者会误认为只有地板没有物体(右下图),这就成功实现了隐身。

图片来源:Valentine, Jason, et al.  Nature Materials 8 (7), 568-571 (2009).

设计隐身衣时还有一个非常重要的实用原则,那就是隐身衣越薄越好。如果能够像一件轻薄的衣服贴身穿上即可隐身,自然比一套厚重的铠甲更方便实用。根据这一原则,科学家们开发出了超薄光学隐身衣:通过将一层 80 纳米厚度的纳米天线覆盖在物体表面,这层纳米天线不仅可以调节反射光的方向还可以调节反射光的相位,从而像平滑平面一样反射光线并将物体掩饰为平滑地面(见下图)。这层超薄纳米天线显然非常类似于隐身斗篷,但是它只能对特定波长的光(730nm)起作用。要想实现对整个可见光波段起作用的广谱隐身衣,目前的技术尚不成熟,科学家们还需要进一步的努力。

图片来源:Ni, Xingjie, et al., Science 349.6254 (2015): 1310-1314.

显然,先进的科学技术逐步将光学隐身衣从影视故事变为现实。是不是披上光学隐身衣就可以人生开挂随时惊吓小伙伴呢?聪明的读者可能会说:哪怕闭上眼睛我也能从脚步声探测到别人靠近。事实确实如此,声波和超声波也可以用来探测物体,比如蝙蝠在黑暗中飞行,B 超检查身体,声呐探测鱼群、潜艇等,都是利用了声波或超声波来探测物体的。相应的,针对声波和超声波的隐身衣研究也是如火如荼。

(3)声学隐身衣

声学隐身衣的基本原理与光学隐身衣相同:使物体对声波的传播不产生影响即可实现声学隐身衣。具体实例如下图所示,科学家设计实现了一种由 16 个同心环组成的超构材料声学隐身衣:这些同心环可以引导声波绕过中心的物体实现声学隐身。如果只有物体放置在声场中,会对声场产生较大影响(上排图片);而加上隐身衣后,声场传播基本不受影响(下排图片)。声学隐身衣在很多领域也有非常重要的应用前景:比如潜艇的防声呐探测、隔音设施的设计等。

图片来源:Zhang, S., Xia, C., & Fang, N. (2011).  Physical review letters, 106 (2), 024301

(4)其他类型的隐身衣

除了光学隐身衣,声学隐身衣,还有其他隐身衣吗?答案是肯定的:热学隐身衣也是一种常见的隐身衣。众所周知,很多物体包括人体都具有跟周围环境不同的温度,那么根据这种温度的不同,可以利用测温装置比如红外探测器发现物体。因此,科学家们可以设计相应的热学隐身衣:通过类似的原理可以设计针对热流传播方程的热学超构材料并制造相应的热学隐身衣。当穿上这种热学隐身衣时,人体的温度就跟背景温度一致,从而实现热学隐身,如下图的红外照片所示。

图片来源:Adam Harvey

受到以上这些隐身衣的启发,最近的研究热点开始聚焦在流场中实现隐身。流场隐身衣追求把物体对流场的扰动降到最低,进而使外界无法从流场的变化中探测到物体。这种流场隐身衣 2019 年首次在多孔介质流场中实现,如下面的示意图所示:没有物体时流场是平直的(a),放入物体后流场被扰动(b),当覆盖一层流场隐身衣后流场恢复平直(c)。这种流场隐身衣在水下航行器隐身和水下减阻等领域中具有重要意义。

图片来源:J Park, JR Youn, YS Song, Physical review letters, 2019

同样的,流场隐身衣也是越薄越好。有鉴于此,我们团队(香港中文大学徐磊教授研究组)研发出了目前世界上最薄的壳层式隐身衣。我们的设计巧妙地结合双层隐身设计的里层与隐藏物于一体,将双层隐身设计进一步缩减为单层隐身,从而实现最薄的流场隐身衣 —— 其厚度仅为中间隐藏物体的千分之三。如下图所示:理论计算显示没有物体时流场平直(A),放入物体后流场被扭曲(B),而覆盖我们的超薄流场隐身衣后流场重新变为平直(C)。数值模拟展示了类似的结果(D, E, F)。实验进一步验证了没有物体时流线平直(G),放入物体后流线变得弯曲(H),物体外披上我们的超薄隐身衣后流线重新变得平直(I)。这种超薄隐身衣对于实现物体的近场隐身有非常重要的意义。

图片来源:Chen, M., Shen, X., & Xu, L. (2022). The Innovation, 100263.

小结

综上所述,自然界存在各种不同的物理场,比如光场、声场、温度场、流场,等等。针对不同的物理场均可研发各种隐身衣作为有效的反探测手段。这些隐身衣可以单独使用,也可以组合在一起形成针对多物理场的超级隐身衣。随着探测手段的日益提高,反探测的隐身研究也是水涨船高。还有什么新的黑科技会从中诞生呢?让我们拭目以待!

致谢:感谢陈梦谣博士、沈翔瀛博士对本文提供的素材和图片。

参考文献

  • 1. Choi, J. S., & Howell, J. C. Optics Express, Vol. 22, Issue 24, pp. 29465-29478 (2014).

  • 2. Gunnar Dolling, Martin Wegener, Stefan Linden, and Christoph Hormann, Optics Express, Vol. 14, Issue 5, pp. 1842-1849 (2006).

  • 3. D. Schurig, et al., Science, 314, 977-980 (2006).

  • 4. Valentine, Jason, et al.  Nature Materials 8(7), 568-571 (2009).

  • 5. Ni, Xingjie, et al., Science 349, 6254, 1310-1314 (2015).

  • 6. Zhang, S., Xia, C., & Fang, N, Physical review letters, 106, 024301 (2011).

  • 7. J Park, JR Youn, YS Song, Physical review letters, 123, 074502 (2019).

  • 8. Chen, M., Shen, X., & Xu, L. The Innovation, 3(4), 100263 (2022).

出品:科普中国

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注