大家好,今天来介绍大数据特征有几种(工业大数据的特征有哪些)的问题,以下是渲大师小编对此问题的归纳和整理,感兴趣的来一起看看吧!
大数据的特征包括哪些
1、规模性
随着信息化技术的高速发展,数据开始爆发性增长。大数据中的数据不再以几个GB或几个TB为单位来衡量,而是以PB(1千个T)、EB(1百万个T)或ZB(10亿个T)为计量单位。
2、多样性
多样性主要体现在数据来源多、数据类型多和数据之间关联性强这三个方面。
数据来源多,企业所面对的传统数据主要是交易数据,而互联网和物联网的发展,带来了诸如社交网站、传感器等多种来源的数据。
而由于数据来源于不同的应用系统和不同的设备,决定了大数据形式的多样性。大体可以分为三类:一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;二是非结构化的数据,如视频、图片、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据间的因果关系弱。
数据类型多,并且以非结构化数据为主。传统的企业中,数据都是以表格的形式保存。而大数据中有70%-85%的数据是如图片、音频、视频、网络日志、链接信息等非结构化和半结构化的数据。
数据之间关联性强,频繁交互,如游客在旅游途中上传的照片和日志,就与游客的位置、行程等信息有很强的关联性。
3、高速性
这是大数据区分于传统数据挖掘最显著的特征。大数据与海量数据的重要区别在激握两方面:一方面,大锋铅老数据的数据规模更大;另一方面,大数据对处理数据的响应速度有更严格的要求。实时分析而非批量分析,数据输入、处理与丢弃立刻见效,几乎无延迟。数据的增长速度和处理速度是大数据高速银升性的重要体现。
4、价值性
尽管企业拥有大量数据,但是发挥价值的仅是其中非常小的部分。大数据背后潜藏的价值巨大。由于大数据中有价值的数据所占比例很小,而大数据真正的价值体现在从大量不相关的各种类型的数据中。挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,并运用于农业、金融、医疗等各个领域,以期创造更大的价值。
大数据的特征有哪些
大数据的特征主要包括以下四个方面:
大量性:大数据通常具有海量的数据量,甚至可能超过几百TB或者几PB。因此,大数据的处理需要采用分布式存储和计算技术。
多样性:大数据的来源多种多样,包括结构化数据、半结构化数据和非结构化数据等。这些数据形式不同,处理方法也不同,因此需要采用多种处理技术。
高速性:大数据的处理和分析需要快速完成,以满足实时数据告返薯分析的需要。例如,在金融交易、互联网广告、社交媒体等领域,需要在短时间内进行数据分析。
价值性:袜者大数据具有较高的价值,可以用于预测和分析趋势、提高生产效率和决策效率等。通过对大数据的分析和挖掘,可以发现商业模式的漏洞,找到新的商业机会。
同时,随着技术的不断发展,大世首数据的特征也在不断演变和扩展,例如可视化分析、深度学习、自然语言处理等。
想要系统学习,你可以考察对比一下开设有相关专业的热门学校获取资料,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。
祝你学有所成,望采纳。
大数据的特征
大数据就是无法通过人工的方式来完成数据分析和处理,需要借助工具才能完成相应的数据处理。大数据通常有3个特征:数量,种类,纯氏速度。准确的来说可以用大量,多样性,速度快以及价值高和密度低这四大特征来描述大数据。
一、大量性,数据量的级别从GB至、PB、乃至ZB上升,可称为海量,巨量甚至超量。并且以很快的速度在增长。最为典型的就是我们使用的微信,每天都会产生上亿级别的数据,来自不同领域,不同平台的用户都会产生大量的数据渗让,这些数据是在不断的增长的,并且每个时间点都是不一样的,面对这样高速的增加,需要支撑的服务也是有要求的,这就需要有高并发高吞吐量的服务器来支撑。
二、多样性。数据信息由原来的简单数值、字符和文本向网页、图片、视频、图像和位置信息等半结构化和非结构化的数据类型发展,并且有一个通过的特征,信息大多分布在不同的地理位置、不同的存储设备以及不同的数据管理平台。简单的总结为三点:
(1)数据来源多,和我们生活密切相关的社交应用像微博、微信、社交网站等等。
(2)数据类型繁多,来自同一个平台可能就有不同的数据类型,图片,视频等等。
(3)数据之间的关联性强,交互频繁,大型电子商务网站和社交网络中,一些用户的点击行为在一定程度上反映了该用户潜在的兴趣爱好和需求,链接之间的关联性是很强的。
三、快速化,大数据多数据的处理丛裤局也是有一定的要求的,有的应用要求对数据的处理做到实时、快速。比较常见的就是我们最好的1元购,每次都有来自不同区域的海量数据,要在一定的时间内完成数据的计算和分析,这就需要将分布式计算、并行计算等等深度的结合才能满足需求的。
四、价值高密度低,我们经常会看到很多虚假的信息,通常情况下正在有价值的信息还是很分散的、密度非常低的,要在海量中寻求有价值的信息还是很有技术要求的。
感兴趣可以到科多大数据进行咨询:
http://www.keduox.cn/?service=Personage.index
大数据的四个基本特征包括
大数据的四个基本特征是:数据量大,要求快速响应,数据多样性,价值密度低。
大数据的四个基本特征介绍:
1、数据量大
TB,PB,乃至EB等数据量的数据需要进行数据分析处理。
2、要求快速响应
市场变化快,要求能及时快速的响应变化,那对数据分析也要快速,在性能上有更高要求,所以数据量显得对速度要求有派雹巧些“大”。
3、数据多样性
不同的数据源,非结构化数据越来越多,需要进行清洗,整理,筛选等操作,变为结构数据。
4、价值密度低
由于数据采集的不及时,数据样本不全面,数据可能不连续等等,数据可能会失真,但当数据量达到一定规模,可以通过更多的数据达到更真实全面的反馈。
大数据(big data),IT行业术语,是指尘键无法在一定时间范围内用常规肆毁软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。